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ABSTRACT 
 

acteroides spp. are Gram-negative bacilli, non-
endospore-forming and obligate anaerobes, 
belonging to Phylum Bacteroidetes, Class Bacteroidia, 
Order Bacteroidales, Family Bacteroidaceae, with 40 
taxonomically recognized species. They are 

anaerobes, and hence, commonly found in warm-blooded 
animals’ guts and fecal microbiome, where they are the most 
dominant bacteria, having either mutually or commensally co-
evolved with their host. However, they are also disease-causing 
and carriers of antibiotic resistance genes. Hence, release of 
Bacteroides-dominated feces by hosts causes fecal pollution, 
especially in water bodies. Despite being anaerobes, Bacteroides 
have a short lifespan. They leave their genetic materials behind 
as environmental DNA, which remain viable for PCR. DNA 
isolation can determine the feces’ source—a technique known 
as microbial source tracking (MST). There are two types of 
MST: library-dependent (LDM) and -independent (LIM). 
Bacteroides use falls under LIM, wherein animal associated 
Bacteroides markers determine the fecal contamination’s source. 

Due to extensive co-evolution between Bacteroides and hosts, 
most LIM-MST biomarkers are Bacteroides-based [PigBac 
(pigs), CowBac (cows), ChickenBac (chicken)] and human-
based (HF183, HumBac), etc. MST also effectively determines 
fecal pollution extent from anthropogenic and agricultural 
sources. Therefore, MST can directly determine a definitive 
fecal pollutant source. The main limitation of LIM-MST is the 
lack of markers for other animals. Most available MST markers 
are directed toward domesticated animals (chickens, cows, pigs). 
Moreover, even existing markers are affected by geography and 
animal diet. These limitations warrant continued efforts to fill 
the gaps by designing more specific and sensitive MST animal 
markers. This review aims to initiate interest in the use of 
Bacteroides for efficient water quality monitoring. 
 
 
INTRODUCTION 
 
The gut contains a rich microbial ecosystem that plays a key role 
in animal health (Turroni et al. 2020; Zafar and Saier 2021). The 
human intestine alone contains approximately 1011 to 1012 
bacteria per gram of colonic content (Eckburg et al. 2005). 
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Numerically, the most dominant group of bacteria in the human 
intestine and other warm-blooded animals belongs to the Order 
Bacteroidales (Kabiri et al. 2013; Coyne et al. 2014; Tamana et 
al. 2021; Zafar and Saier 2021). Bacteroides exclusively live and 
grow in their animal host’s gut, suggesting a strong evolutionary 
adaptation to the gastrointestinal tract (GIT) environment 
(Wexler and Goodman 2017). Bacteroides are introduced into 
its human host via vaginal or cesarian delivery and skin contact 
with lactating mother (Wang et al. 2015; Milani et al. 2017). B. 
thetaiotamicron is commonly found to be the prevalent 
Bacteroides during the lactating months of a human baby since 
this Bacteroides species can highly degrade glycan from human 
milk (Fouhy et al. 2012; Milani et al. 2017). As more solid foods 
are introduced, more Bacteroides species inhabit the niches in 
the gut since they are highly specialized in the degradation of 
several kinds of glycan. As humans grow and consume more 
food groups, particularly during childhood, Bacteroides species 
shift dominance to other species such as B. ovatus and B. 
xylanisolvens (Zhong et al. 2019). Differences in diets among 
adults show differences in dominant Bacteroides species. 
Among omnivorous adult humans, B. salanitronis and B. 
coprocola co-dominate in the gut. Conversely, for vegetarian 
adults, B. vulgatus is dominant while B. salyersiae is prevalent 
in vegans (Ferrocino et al. 2015). However, B. thetaiotamicron 
and B. fragilis are generally found in high concentrations in all 
stages of life (Zafar and Saier 2021). 
 
Bacteroides in the gut play beneficial roles in their warm-
blooded animal hosts, although Bacteroides have already been 
isolated from cold-blooded animals such as fishes and frogs 
(Kabiri et al. 2013; Gibb et al. 2017). They have been recognized 
either as mutualists or commensals by providing nutritional and 
immunological benefits, thus establishing stable long-term 
beneficial relationships with their hosts. Thus, Bacteroides are 
considered clinically important anaerobes that are directly 
related to intestinal well-being (Hong et al. 2008). They are so 
extensive and highly adapted to life and survival in the gut that 
they have evolutionarily become an essential species in the gut 
microbial food web (Wexler and Goodman 2017). However, 
they can also cause harm like abscesses to infected organs and 
bacteremia when they break out of the gut. Moreover, 
Bacteroides undergo extensive horizontal gene transfer (HGT) 
that include virulence genes and antimicrobial resistomes. 
Resistomes are well characterized collection of antibiotic 
resistance genes (ARGs) from a variety of environments (Ma et 
al. 2021). Some of the ARGs are transferred to other Bacteroides 
spp. or other transient bacteria of the gut, and thus, when these 
Bacteroides or the transient bacteria are expelled with the feces, 
they have with them the antibiotic resistance phenotype 

(Huddleston 2014). Bacteroides constitute 30%–50% of the total 
fecal bacteria, with concentrations of 1011 cells per gram of feces 
(Paruch et al. 2019). Although only a small portion of the gut 
microbial population is culturable, 14%–40% of cultivable 
microorganisms in the fecal microbiota are Bacteroides (Hong 
et al. 2008). Due to the dominance of Bacteroides in both the gut 
and fecal microbiome and its strong evolutionary ties to its host, 
it has been used as an alternative fecal bacterium for monitoring 
water pollution, instead of the traditional fecal indicator bacteria 
(FIB) such as the fecal coliforms (Escherichia coli and 
Enterococcus faecalis). Hence, this review discusses 
Bacteroides as a fecal pollutant that contributes to the 
degradation of water quality and causes illnesses, to a more 
positive role of being part of the solution by identifying the fecal 
origin – a step forward for developing better governmental 
policies in addressing the problem of water pollution. 
 
Taxonomy and biology of Bacteroides 
Taxonomically, Bacteroides sp. belongs to Phylum 
Bacteroidetes, Class Bacteroidia, Order Bacteroidales, and 
Family Bacteroidaceae. In a review by Wexler (2007), there 
were 21 taxonomically known species of Bacteroides. Those 
were B. acidafaciens, B. caccae, B. coprocola, B. coprosuis, B. 
eggerthii, B. finegoldii, B. fragilis, B. helcogenes, B. intestinalis, 
B. massiliensis, B. nordii, B. ovatus, B. thetaiotamicron, B. 
vulgatus, B. plebius, B. uniformis, B. salyersae, B. pyogenes, B. 
goldstenii, B. dorei, and B. johnsonii. Through the succeeding 
years, the number of Bacteroides species reached 136 
(https://lpsn.dsmz.de/). However, further research on each 
Bacteroides shows that out of 136, only 40 are taxonomically 
legitimate as enumerated in Table 1. The remaining 96 
“Bacteroides” were either taxonomically transferred to a 
different genus and have simply become a taxonomic synonym 
or were not validly published. For example, B. massiliensis has 
been changed to Phocaeicola massiliensis, B. goldsteineii to 
Parabacteroides goldsteinii, and B. dorei to Phocaeicola dorei. 
Moreover, some that were identified as “Bacteroides” are not 
considered taxonomically legitimate, yet they were not validly 
published. This includes B. congoensis, B. cutis, and B. sediment, 
etc.  
 
Although Bacteroides is the most predominant bacterial group 
in the gut, there are only 40 taxonomically legitimate known 
species compared with other bacteria. This may be because 
Bacteroides are anaerobes, and anaerobic conditions are one of 
the most challenging conditions to be able to obtain an enriched 
or pure culture (Mori and Kamagata 2014). 
 

Table 1: List of 40 Bacteroides valid species 
 Bacteroides species GenBank Accession  

Number 
Source Reference 

1.  B. acidifaciens AB510696 Mice cecum Miyamoto and Itoh 2000 
 

2.  B. caccae 
 

X83951 Human feces Johnson et al. 1986 

3.  B. caecicola AB910337 Chicken cecum Irisawa et al. 2016 
 

4.  B. caecigallinarum 
 

AB861981 Chicken cecum Saputra et al. 2015 

5.  B. caecimuris 
 

KR364741 Mice intestine Lagkouvardos et al. 2016 

6.  B. cellulosilyticus  AJ583243 Human gut Robert et al. 2007 
 

7.  B. clarus AB490801 Human feces Watanabe et al. 2010 
 

8.  B. coprosuis AB510699 Pig manure Whitehead et al. 2005 
 

9.  B. eggerthii AB050107 Human feces Holdeman and Moore 1974 
(Approved Lists 1980) 
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10.  B. faecalis MK207058 Human feces Yu et al. 2019 
 

11.  B. faecichinchillae AB574480 Chinchilla feces Kitahara et al. 2012 
 

12.  B. faecis AB547640 Human feces Kim et al. 2010 
 

13.  B. finegoldii AB222699 Human feces Bakir et al. 2006a 
 

14.  B. fluxus AB490802 Human feces Watanabe et al. 2010 
 

15.  B. fragilis AB050106 Human intestine Castellani and Chalmers 1919 
(Approved Lists 1980) 
 

16.  B. galacturonicus DQ497994 Human intestine Jensen and Canale-Parola 1986 
 

17.  B. gallinaceum AB910339 Chicken cecum Irisawa et al. 2016 
 

18.  B. gallinarum AB253732 Chicken cecum Lan et al. 2006 
 

19.  B. graminisolvens AB363973 Cow waste Nishiyama et al. 2009 
 

20.  B. helcogenes AB200227 Pig feces Benno et al. 1983 
 

21.  B. intestinalis AB214328 Human feces Bakir et al. 2006b 
 

22.  B. koreensis KX025133 Human feces Shin et al. 2017 
 

23.  B. kribbi  KX025134 Human feces Shin et al. 2017 
 

24.  B. luhongzhouii  MK584158 Human feces Ge et al. 2021 
  

25.  B. luti AB787271 Anaerobic treatment 
sludge/ facility 
 

Hatamoto et al. 2014 

26.  B. nordii AB510704 Human intestine Song et al. 2004 
 

27.  B. oleiciplenus  AB490803 Human feces Watanabe et al. 2010 
 

28.  B. ovatus  X83952 Human feces 
 

Eggerth and Gagnon 1932 
(Approved Lists 1980) 
 

29.  B. pectinophilus ABVQ01000036 Human intestine Jensen and Canale-Parola 1986 
 

30.  B. propionicifaciens AB264625 Cow feces Ueki et al. 2008 
 

31.  B. pyogenes  AB200229 Pig feces Benno et al. 1983 
 

32.  B. reticulotermitis  AB692943 Termite gut Sakamoto and Ohkuma 2013 
 

33.  B. rodentium 
 

AB547646 Chinchilla feces Kitahara et al. 2011 

34.  B. salyersiae  AB510707 Human intestine Song et al. 2004 
 

35.  B. stercorirosoris  AB574481 Chinchilla feces Kitahara et al. 2012 
 

36.  B. stercoris  X83953 Human feces Johnson et al. 1986 
 

37.  B. thetaiotaomicron  AB050109 Human gut Castellani and Chalmers 1919 
(Approved Lists 1980) 
 

38.  B. uniformis  AB050110 Human feces Eggerth and Gagnon 1932 
(Approved Lists 1980) 
 

39.  B. xylanisolvens  AB510713 Human feces Chassard et al. 2008 
 

40.  B. zhangwenhongii  CP059856 Human feces Ge et al. 2021 
 

Morphologically, Bacteroides are Gram-negative, non-motile, 
rod-shaped, and non-spore-forming bacteria, as consistently 
shown in all references enumerated in Table 1. Based on these 
references, most pure culture isolations were performed using 
Eggerth-Gagnon (EG) Agar supplemented with 5% blood. 
However, several recent publications on Bacteroides isolation 
use Bacteroides Bile Esculin (BBE) agar (Niestepski et al. 2019; 
Zamani et al. 2020; Dela Rosa and Rivera 2021). Interestingly, 
the colonial morphology is circular, entire, raised convex, 
smooth, and grayish to off-white for both EG and BBE agars. In 
all instances, the culture condition is at 37°C for 48–72 h in an 
anaerobic condition to simulate the submicromolar range of 
oxygen levels in the large intestine. Besides its anaerobic 

physiology, due to the challenging environment of the large 
intestine, where most of the gut microorganisms’ live, 
Bacteroides have developed other adaptive mechanisms for their 
survival in the adverse environment of the large intestine. For 
example, many species of Bacteroides contain cytochrome bd 
oxidase that uses oxygen as a terminal electron acceptor, thus, 
lowering oxygen levels in the gut. Interestingly, some 
Bacteroides contain the gene nrdA, which codes for an enzyme 
used only in aerobic respiration. Through these, Bacteroides can 
tolerate oxygen and allow their spread to new hosts. (Smalley et 
al. 2002; Wexler and Goodman 2017). 
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Bacteroides and the vertebrate gut 
Bacteroides as mutualist and commensal 
Intestinal Bacteroides have co-evolved intricate symbiotic 
relationships with their specific animal hosts (Bäckhed et al. 
2005). The interaction is characterized by Bacteroides 
producing secondary metabolites essential to its host, and in 
return, the animal host providing stable gut microbial ecosystem 
(Groussin et al. 2021). Moreover, to a limited extent, 
Bacteroides are also involved in developing the host’s immune 
system (Troy and Kasper 2010). In comparing the fecal 
microbiota of different host vertebrates using 16S rRNA gene, it 
showed that Bacteroides spp. co-evolve with their hosts, and co-
diversified with them (Ley et al. 2008). Symbiosis is so strong 
that there is a development of host-microbiome fidelity and 
cohesive association (Groussin et al. 2017). 
 
One of the well-researched symbiotic relationships between 
Bacteroides and its human host is glycans – simple and complex 
carbohydrates that play metabolic, structural, and physical role 
in biological systems (Comstock 2009; Varki 2017). The 
mammalian host lacks the enzymatic capacity to degrade 
glycans, however, B. thetaiotamicron, a glycophile, can break 
down various dietary glycans. It has 88 polysaccharide 
utilization loci for degrading various glycans, including plant 
glycans/polysaccharides (Guo et al. 2020). This capability is not 
exclusive to B. thetaiotamicron. The collective Bacteroides 
population poses an enormous, combined polysaccharide 
degradative ability capable of metabolizing more than a dozen 
different kinds of plant and host-derived polysaccharides 
(Comstock 2009; Wexler and Goodman 2017).  
 
More recently, B. thetaiotamicron was proven to restrict the 
growth of Clostridioides difficile colonization in the gut. There 
is a direct association that B. thetaiotamicron increases the 
concentration of several acids (α-muricholic, β-muricholic, 
ketolithocholic, and deoxycholic) known to inhibit C. difficile 
and reduces the taurocholic acid production that promotes C. 
difficile germination (Li et al. 2021b).   
 
On the other hand, B. fragilis, conversely, exerts a beneficial 
immunologic effect. In an experiment conducted on germ-free 
gut mice, it was discovered that the mice have smaller Payer’s 
patches, fewer germinal centers, reduced IgA-producing plasma 
cells, decreased CD4+ T cells in the intestinal lamina propria, 
and structural defects of the splenic and lymphoid nodes. 
However, after orally introducing B. fragilis, it was adequate to 
correct the abnormalities (Troy and Kasper 2010). Additionally, 
a B. fragilis strain isolated from a baby’s feces was shown to 
have the capability to improve phagocytosis, improve IL-10 
production, and increase CD80 and CD86 of M1 macrophage 
cell surface expression (Deng et al. 2016; Landuyt et al. 2021). 
There are proposals of developing B. fragilis as a probiotic 
because of its beneficial effect on its host (Deng et al. 2016). 
Other beneficial effects of other Bacteroides species are from B. 
dorei, B. xylanisolvens, B. acidafaciens, B. ovatus, and B. 
uniformis. These Bacteroides species have been proposed as live 
biotherapeutic products (LBP) or are also called next-generation 
probiotics (NGP). Generally, LBP/NGP is still under study and 
has no history yet of being used as a probiotic, unlike traditional 
probiotics (Lactobacillus and Bifidobacterium) with long and 
successful industrial use. Moreover, traditional probiotics are 
commonly used as food and supplements, but LBP/NGP is still 
being studied for a possible preclinical mode of action, 
pharmacokinetics, and pharmacodynamics (O’Toole et al. 2017).  
 
Another example is B. xylanisolvens which was reported to 
possess immunomodulatory properties and produce short fatty 
acids (propionate and succinate) in the gut (Ulsemer et al. 2012). 
The research has shown that pasteurized B. xylanisolvens 

increases the level of TNFα-specific IgM antibodies and 
promotes a robust response to cancer treatment.  
 
Another beneficial relationship between mammalian host and 
Bacteroides that is well documented is B. acidafaciens which 
increases the production of IgA in the large intestine by 
increasing IgA+ B cells (Yanagibashi et al. 2013). B. uniformis, 
on the other hand, when administered to obese mice, was shown 
to have beneficial effects in preventing obesity by significantly 
modifying total body weight. Further experiments have shown 
that the continuous administration of B. uniformis substantially 
reduces fat micelles in enterocytes and reduces leptin levels, 
serum cholesterol and triglyceride levels, which indicates that B. 
uniformis has a positive effect on the hepatic steatosis. Lastly, 
mice fed with the recombinant strain of B. ovatus that produces 
TGF-β1 can prevent or treat acute colitis (Gauffin Cano et al. 
2012). 
 
In another study, B. fragilis was shown to produce a capsular 
polysaccharide that helps protect a person from nerve 
demyelination (Ochoa-Reparaz et al. 2010). Furthermore, 
pediatricians analyzed the guts of 405 infants and found that 
those infants with Bacteroides-dominant microbiota were 
positively correlated with higher cognitive and language 
performance (Tamana et al. 2021). B. fragilis was even shown 
to produce large quantities of γ-aminobutyric acid (GABA), a 
neurotransmitter that influences behavior and response to stress 
(Strandwitz et al. 2019). 
 
Bacteroides as a disease-causing organism 
Although Bacteroides is known to be a mutualist or commensal 
when in the gut, it is equally known to be pathogenic when it 
escapes the gut due to a breached or compromised mucosal wall 
of the intestine. This implies that location is pivotal. It has 
caused abscesses in the liver, abdominal cavity, brain, pelvis, 
lungs, perirectal area, gangrenous appendicitis, diverticulitis, 
inflammatory bowel disease, and bacteremia. There was even a 
study with 365,490 healthcare-related infections, which revealed 
that Bacteroides spp. is on the top 15 most common pathogen 
that causes nosocomial infections (Wexler 2007; Brook 2016; 
Weiner et al. 2016). Among the Bacteroides species, B. fragilis 
is identified to be the most virulent, with B. ovatus, B. 
thetaiotamicron, and B. vulgatus to be clinically important 
species (Majewksa et al. 2021). It is interesting because B. 
fragilis and B. thetaiotamicron are considered beneficial and at 
the same time, pathogenic (Mazmanian and Kasper 2006). The 
beneficial effects of B. fragilis are strain dependent. There are 
other strains of B. fragilis that produce fragilysin toxin 
associated with colorectal cancer (Cheng et al. 2020). 
Additionally, B. fragilis has been isolated from 63%–80% of 
Bacteroides-related infections. Conversely, B. thetaiotamicron 
accounts for 13%–17% of Bacteroides infection cases (Cerdeño-
Tárraga et al. 2005). Moreover, some strains of B. fragilis and B. 
thetaiotamicron were found to have genes that encode C10 
proteases. These Bacteroides C10 proteases were identified to 
be homologous to the C10 cysteine protease of Streptococcus 
pyogenes (Thornton et al. 2012). A genetic exchange may have 
caused such homology via HGT between the two bacteria. There 
are recent documentation of other Bacteroides species 
associated with infection such as B. dorei and B. pyogenes. An 
invasive strain of B. dorei was isolated from a patient and shown 
to have contributed to the patient’s mycotic aortic aneurysm. 
This report suggests caution in using B. dorei for biotherapeutic 
purposes, as some have already proposed (O’Toole et al. 2017; 
Matsuoka et al. 2021). This is very interesting because B. dorei 
was considered to play a probiotic role in the gut (Zafar and 
Saier 2018). B. pyogenes can cause bacteremia secondary to cat 
and dog bites, prosthetic joint, and amputation infections 
(Majewksa et al. 2021). Moreover, B. vulgatus and B. ovatus 
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were associated with possible increased incidence of Crohn’s 
and Coeliac diseases (Zafar and Saier 2018). 
 
A very important characteristic of Bacteroides is their extensive 
ability for HGT. A study has shown that Bacteroides species 
engage more frequently in HGT than other bacterial species in 
the gut. Bacteroides displayed an average HGT frequency range 
of 0.85%–2.3% for 10-kb+ HGT and 6.0%–10.1% for 500-bp+ 
HGT. Additionally, two other gut bacteria: Bifidobacterium 
longum and Akkermansia muciniphila have a HGT frequency of 
0.04% and 0.06% for 10-kb+ HGT and 0.81% and 1.64% for 
500-bp+ HGT, respectively (Groussin et al. 2021). Bacteroides 
HGT is so extensive that it was reported to have performed 
interspecies and even interfamily HGTs – the most likely 
mechanism that Bacteroides gets other bacteria to acquire 
antibiotic resistance (Coyne et al. 2014). In the gut, Bacteroides 
serves as an antibiotic resistance gene reservoir that transfers 
those resistance genes to transient bacteria – those that just pass 
through or do not colonize the gut (Huddleston 2014). 
 
Quick genetic exchanges happen by conjugation as the favored 
mechanism of HGT due to the protection it provides to the DNA 
during transfer (Arber 2014). In another study, B. fragilis was 
shown to have a novel HGT mechanism that allows them to 
immediately insert very large segments of Bacteroides 
chromosomal DNA. Since large segments are transferred instead 
of multiple small segments, it allows Bacteroides to rapidly 
adapt to changing host GIT environment (Husain et al. 2017). It 
was also observed that most genes that contribute to strain 
diversity are in regions more likely to be acquired by HGT and 
spread out in multiple elements such as from phage, conjugative 
plasmids, and conjugative transposons (Coyne et al. 2014).      
 
Fecal water pollution 
Bodies of water are one of the primary components of our 
ecosystem that play a fundamental role in the existence of all 
biological systems. For humans, water plays an important role 
in the fields of agriculture, livestock, forestry, industry, fisheries, 
aquaculture, energy production, recreation, and others (Effendi 
2016; Ogunkunle et al. 2016). But for the simple yet vital part of 
it, water is an essential component of cellular homeostasis of the 
human body (Popkin et al. 2010). Unfortunately, there are 
reports of massive water pollution/contamination globally (Yan 
et al. 2015; Maceda-Veiga et al. 2017; Noorhosseini et al. 2017; 
Ruzol et al. 2017). Water pollution is defined as the 
direct/indirect and sudden or gradual negative alteration of 
water’s physico-chemical and biological properties, which 
deteriorates water quality. Consequently, it becomes a hazard to 
the health of any organism and makes it unfit to its other 
assigned uses, incurring economic loss and social instability. 
Pollutants can be natural contaminants, such as those due to 
weathering and soil leaching which are gradual processes rather 
than anthropogenic sources that are rapid and usually on the rise 
and associated with industrial, agricultural, and domestic 
effluents (Ogunkunle et al. 2016). There are two types of water 
pollutant that affect water quality. These are the non-point 
sources (NPS) and point sources (PS). In NPS, pollutants enter 
the water system from unidentified diffuse sources and are 
difficult to control, like stormwater runoff and domestic and 
wild animal defecation. Alternatively, PS are impurities that 
enter the water system from an easily identifiable location via a 
direct route like effluents from sewage treatment plants, 
industrial effluents, and municipal wastes (Ahmed et al. 2005; 
Jamwal et al. 2011). An increasingly concerning water 
contaminant that threatens freshwater systems is fecal pollution, 
as it may cause the spread of microbial pathogens and increase 
the nutrient load of water (Fan et al. 2017). Contaminated feces 
from infected animal sources may contain various pathogenic 
microorganisms like Escherichia coli, Campylobacter, 
Salmonella, Shigella, Yersinia, Pasteurella, Francisella, Vibrio, 

Entamoeba histolytica, Blastocystis, Giardia, and various 
viruses, such as adenoviruses, enteroviruses, and rotaviruses. 
Their release in freshwater bodies leads to waterborne diseases 
(Savichtcheva and Okabe 2006; Woodall 2009; Hampson et al. 
2010; Efstratiou et al. 2017). 
 
A major source of fecal pollution is from anthropogenic 
activities. It comes from agricultural, industrial, municipal, and 
household wastes (Li et al. 2021a). Poor fecal waste 
management in farms, inefficient discharge of water from 
treatment plants (Diaz-Gavidia et al. 2022), and reuse of 
municipal and domestic wastewater in agricultural irrigations 
(Al Hamedi et al. 2023) are the causes of widespread fecal 
pollution. However, efforts have been made to solve this 
challenge. Yet, the situation of fecal pollution lingers because of 
our inability to pinpoint the sources of the pollutant – a key step 
in mitigating the fecal pollution problem (Xue et al. 2018). If the 
point of origin of fecal contamination and pathogens is precisely 
and accurately known whether human or animal, then the proper 
government policy, management, minimization of public health 
risks associated with fecal contamination, and remediation 
efforts can be apportioned more efficiently and effectively 
(Ahmed et al. 2005; Savichtcheva and Okabe 2006). Thus, a 
relatively new technique that answers the question of reliably 
pinpointing the source of the fecal contamination by using fecal 
bacteria and determining how much of each source contributes 
to the contamination is called microbial source tracking (MST) 
(Harwood et al. 2014). 
 
Microbial source tracking 
MST, the same as fecal source tracking and bacterial source 
tracking, is based on fecal microorganisms being strongly 
associated with their host species. Moreover, it supports the idea 
that some identified attributes or patterns (i.e., antibiotic 
resistance patterns, 16S rRNA gene sequences) of the host-
associated microorganisms can be used as markers for tracing 
the fecal contamination back to its host (Harwood et al. 2014). 
It is a relatively new approach to discriminate, pinpoint, and 
quantify human and other fecal contamination that may exist in 
the environment and is usually applied in aquatic environments 
(Odagiri et al. 2015; Mattioli et al. 2017). In short, MST is about 
identifying the specific animal source of a given fecal 
contaminant. This contrasts with the traditional culture-based 
method that is limited to determining the presence of a fecal 
contaminant (Rivera and Rock 2011). 
 
Globally, different MST methods have been used to accomplish 
the goal of MST, which is to determine fecal pollution sources 
so that the needed socio-political and environmental actions can 
be undertaken. Some MST research was conducted in Virginia, 
USA, in which antibiotic resistance patterns and carbon 
utilization profiles were used to find out whether there was fecal 
pollution in their waters and to trace its specific sources 
(Wiggins 1996; Hagedorn et al. 2003). The biochemical 
fingerprinting MST method was used in Queensland, Australia, 
to identify the sources of E. coli and Enterococci in Eudio, Creek 
(Ahmed et al. 2005). The human specific HF183 Bacteroides 
MST marker was used to assess the extent of human fecal 
pollution in two freshwater canals in Ghent, Belgium. 
Conversely, a similar assessment but on pig fecal pollution was 
done in Britanny, France (Mieszkin et al. 2009). Fatty acid 
methyl ester (FAME) profiling analysis was used in Pasadena, 
USA, to source-track the fecal coliforms (Duran et al. 2006). In 
Michigan, USA, MST method using the β-glucuronidase gene 
was used to know whether household pets have a significant 
input in the fecal pollution in the surrounding surface waters 
(Ram et al. 2007). In France, two library-independent MST 
methods were used (Bacteroidales 16S rRNA gene marker 
detection and F-specific RNA bacteriophage genotyping) to 
source track the fecal pollution in a French estuary (Gourmelon 
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et al. 2007). MST was also used in Florida, USA, to evaluate the 
effect of stormwater concerning water quality using BOX-PCR 
(Brownell et al. 2007). In Nicoya, Costa Rica, MST was used to 
determine the water quality of shellfish harvesting waters using 
both viral and bacterial based MST markers (Symonds et al. 
2017). Other MST research was conducted in Korea, using F+ 
RNA coliphages to source track fecal pollution in Metropolitan 
Seoul and Gyeonggi province (Lee et al. 2011), Lake Taihu in 
China (Hagedorn and Xinqiang 2011; Vadde et al. 2019), and 
Dargle River and its tributaries in Dublin, Ireland (Ballesté et al. 
2020). Interestingly, MST was even used to test for fecal 
contamination in fresh produce like tomatoes, jalapeño peppers, 
and cantaloupe and to even determine the sources of the fecal 
contaminant (Lee and Lee 2012; Ravaliya et al. 2014). This 

showed that MST could also be used in other aspects of research 
outside its usual or traditional context, which is for assessing 
environmental water fecal pollution. These studies conducted 
globally show the scale at which MST has been successfully 
used to monitor fecal pollution, particularly in developed nations. 
Unfortunately, its application in many developing countries is 
still limited (Somnark et al. 2018a). 
 
MST methods are either library-dependent (LDM) or library-
independent (LIM) and are analyzed either based on their 
phenotypic and/or genotypic characteristics, as shown in Table 
2. 
 

Table 2: Techniques under library-dependent and library-independent MST methods 
Library-dependent Library-independent 

Culture-based Culture-independent 
Phenotypic 

(Biochemical) 
Genotypic Phenotypic or 

Genotypic 
Molecular 

• Antibiotic 
resistance (ARA 
and MARA) 
• Carbon 
utilization 
• FAME profiling 

• Rep-PCR 
• RAPD 
• AFLP 
• PFGE 
• Ribotyping 
• DGGE 
• LH-PCR 
• T-RFLP 

• Bacteriophage • Host-specific viral PCR 
• Host-specific bacterial 
PCR 

LDM entails creating a comprehensive database of isolates from 
known sources that will serve as the basis for cross-referencing. 
Firstly, fecal samples are collected from potential or suspected 
sources (i.e., humans, cattle, swine, etc.) of water contamination. 
Then, bacteria from feces are isolated and subjected to either 
phenotypic or genotypic analysis to create a pattern referred to 
as a fingerprint used for cross-referencing. Phenotypic analysis 
may include antibiotic resistance analysis (ARA), multiple 
antibiotic resistance analysis (MARA), carbon source utilization 
analysis, and FAME profiling. Conversely, genotypic analysis 
includes patterns in repetitive DNA sequences (Rep-PCR), 
random amplification of polymorphic DNA (RAPD), amplified 
fragment-length polymorphism (AFLP), pulse-field gel 
electrophoresis (PFGE), ribotyping, denaturing-gradient gel 
electrophoresis (DGGE), length heterogeneity PCR (LH-PCR), 
and terminal restriction fragment-length polymorphism analysis 
(T-RFLP) (Hagedorn et al. 2003; Meays et al. 2004; Duran et al. 
2006; Ballesté and Blanch 2010). However, a major limitation 
in LDM is that it is highly tedious to make a reliable database 
because it requires numerous isolates to be tested and even then, 
the minimum number of isolates needed to construct a reliable 
library has not been fully established (Ahmed et al. 2005). 
 
Alternatively, LIM does not require the construction of a 
database but depends on the concept that bacteria or viruses 
taken directly from the environment come from species-specific 
host/s or sources of fecal contamination; thus, a library is not 
needed for cross-referencing. A significant advantage of LIM, 
as opposed to LDM, is that it saves time and resources as it 
removes the need to construct a library starting with the isolation, 
purification, and culture of microorganisms. In LIM, detection 
of MST-specific markers (or simply MST markers) is used. 
There have been various MST markers developed to 
discriminate human fecal from other fecal animal sources like 
viral MST markers (Wong et al. 2012), bacterial MST markers, 
and recently, the use of mitochondrial DNA (mtDNA) as MST 
markers (He et al. 2016). The most common type of MST marker 
is the use of Bacteriodes spp. as indicators of the type of host 
animal serving as the source of fecal pollution. Bacteroides MST 

markers are designed to target specific diagnostic sequences 
within the Bacteroides 16S rRNA gene present in feces from 
different animals (Layton et al. 2006). 
 
Bacteroides-based MST markers 
Bacteroides-based MST marker is the most extensively used 
MST marker. Due to the anaerobic nature of Bacteroides, it has 
minimal capacity for growth outside the GIT of its host. This 
makes it ideal for MST because it provides a more accurate 
count in terms of the degree of fecal pollution. It has shown a 
high level of host specificity as Bacteroides adapt to the GIT 
conditions of its host and has even co-evolved with its host 
species (Bernhard and Field 2000). Also, the traditional FIB 
only represents less than 2% of the gut microbiota. FIB can 
remain viable and multiply in environmental waters, giving a 
false alarm of fecal pollution (Zheng and Shen 2018). Lastly, 
there is a strong positive correlation that the presence of 
Bacteroides also indicates the presence of fecal pathogens like 
E. coli, Salmonella, and Campylobacter, as shown in Table 3, as 
opposed to detecting the presence of traditional FIB that does 
not show a similar correlation. Therefore, due to all those 
characteristics, many LIM are designed to target specific 
sequences within the Bacteroides 16S rRNA gene to 
discriminate the different sources of contamination by PCR. 
Some of the known Bacteroides-based MST markers are shown 
in Table 4. 
 
Table 3: Studies reporting strong positive correlation between 
the presence of Bacteroides and the presence of fecal pathogens 

Analysis Studies 
Bacteroides and 
fecal coliform 

Schriewer et al. 2010; Villemur et al. 2015 

Bacteroides and 
Escherichia coli 

Ahmed et al. 2008; Mauffret et al. 2012; 
Nshimyimana et al. 2014 

Bacteroides and 
enteroviruses 

Noble et al. 2006; Sauer et al. 2011 

Bacteroides and 
Enterococcus 

Eichmiller et al. 2013; Gordon et al. 2013 

Bacteroides and 
Salmonella, 
Campylobacter 

Schriewer et al. 2010; Stea et al. 2015  
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Bacteroides and 
Giardia, 
Cryptosporidium  

Staley et al. 2012; Marti et al. 2013  

 
Table 4: Known Bacteroides-based MST markers and its target 
host 

Specific target host MST marker/s 
Human  HF183 (Bernhard and Field 2000) 

HuBac (Layton et al. 2006) 
BacHum (Kildare et al. 2007) 
BacH (Reischer et al. 2007) 
HumM2 (Shanks et al. 2009) 
HumM3 (Shanks et al. 2009) 

Pig PigBac-1 and PigBac-2 (Okabe et al. 
2007) 
Pig-1-Bac and Pig-2-Bac (Mieszkin et al. 
2009) 

Cow  BacCow (Kildare et al. 2007) 
BoBac (Layton et al. 2006) 

Dog BacCan (Kildare et al. 2007) 
Horse HoF597 (Dick et al. 2005) 
Muskrat MuBa01 (Marti et al. 2011) 
General Ruminant Rum-2-Bac (Mieszkin et al. 2010) 

BacR (Reischer et al. 2006) 
Chicken  ChickenBac (Kobayashi et al. 2013) 
Duck DuckBac (Kobayashi et al. 2013) 
Canada Goose CGOF1-Bac (Fremaux et al. 2010) 

CGOF2-Bac (Fremaux et al. 2010) 
General Feces AllBac (Layton et al. 2006) 

 
The effectivity of MST and its Bacteroides-based markers have 
been tried and tested in several research globally since their 
development. HF183 gene marker was used as a tracer in 
discriminating between human and ruminant sources of fecal 
pollution in New River, Pasco County, Florida, USA (Chase et 
al. 2012), in Lake Pontchartraine, Louisiana, USA (Xue et al. 
2018), in Nijo River, Kenya (Jenkins et al. 2009), in Danube 
River (Kirschner et al. 2017) and Daoulas River catchment, 
Britanny, France (Mauffret et al. 2012). It was also used in 
determining whether sand and other submerged sediments in the 
waters of Lake Superior, Minnesota, USA can also serve as a 
reservoir of fecal pollution and thus can be an alternative source 
for MST sampling other than water samples (Eichmiller et al. 
2013). Conversely, HF183 was the MST marker used to 
establish the positive correlation of MST markers with 
enterococci in the Gulf of Mexico waters (Gordon et al. 2013). 
HuBac marker was used in the coastal water of Puerto Rico and 
Trinidad and Tobago to assess fecal pollution (Bachoon et al. 
2010). In Ireland, the human MST marker BacHum was used to 
assess the water quality of Mattock River catchment (Flynn et al. 
2016), Ware and Oyster Creek, North Carolina, USA (Gonzalez 
et al. 2012), Sava River Basin that borders three countries such 
as Serbia, Bosnia and Herzegovina, and Croatia (Vrzel et al. 
2016), and Monterey Bay, central California coast, USA 
(Schriewer et al. 2010). BacH was developed in 2006 to detect 
and discriminate human fecal pollution in the Northern Alps, 
Austria (Reischer et al. 2006). In Israel, BacH marker was the 
human MST marker used to assess the water quality of Karst 
springs found in the Sea of Galilee (Ohad et al. 2015), alpine 
springs in Austria (Reischer et al. 2007), coast of Odisha, Bay of 
Bengal (Odagiri et al. 2015) and in Cornwalis watershed, Nova 
Scotia, Canada (Ridley et al. 2014). 
 
Pig-2-Bac is often used to detect and source track pig fecal 
pollution (Bae and Wuertz 2015). Pig-2-Bac was the pig marker 
used to assess the freshwater quality of Taige and Taihu Lake in 
China (He et al. 2016), in Danube River (Kirschner et al., 2017), 
Daoulas catchment, France (Mieszkin et al. 2009; Mauffret et al. 
2012), in Sava River Basin in Central Europe (Vrzel et al. 2016), 
and Tha Chin watershed in Thailand (Somnark et al. 2018b). 
MST marker assessment showed that BacCow, as the cow MST 
marker, was used for India (Odagiri et al. 2015) and Thailand 
(Somnark et al. 2018b). It was also used to identify fecal sources 
of contamination in the Njoro River watershed, Kenya (Jenkins 

et al. 2009), surface waters of the central California coast, USA 
(Schriewer et al. 2010), and coastal waters in Odisha, India 
(Odagiri et al. 2015). Alternatively, BoBac cow MST marker 
was used to assess the NPS of fecal pollution in stream waters 
of Brandywine Creek that pass by the states of Pennsylvania, 
and Delaware, USA (Duris et al. 2011), Harris Neck estuarine 
marshes in Georgia, USA (Markand et al. 2011), pond waters,  
the primary source of water for hygiene purposes in Bangladesh 
(Knappett et al. 2011), and sediment water in Saginaw Bay, 
Michigan, USA (Oun et al. 2017). Cow MST marker BacBov 
was used to assess the water quality in the Grand River 
watershed, southwestern Ontario, Canada, and in Mattock River 
catchment that supplies water to 7% arable land in Ireland 
(Flynn et al. 2016). Rum2Bac is a specific marker for detecting 
fecal contaminants of generally all ruminants that includes 
domesticated animals such as cows, carabaos, sheep, and goats 
and nondomesticated ones like giraffes and elks. Ruminants are 
mammals composed of four gastric compartments namely: 
rumen, reticulum, omasum, and abomasum. The first three 
mentioned stomachs are collectively known as pro-ventriculus 
as they share a common function. They contain bacteria that 
break down ingested cellulose from grasses that ruminants 
usually eat (Teixeira et al. 2009). Thus, Rum2Bac is commonly 
used to screen for the presence of feces from other ruminants 
other than that of cows. Rum2Bac has been used in France in 
their development of MST tools to identify the origins of fecal 
pollution in bathing and shellfish harvesting waters (Gourmelon 
et al. 2010; Mauffret et al. 2013) and in assessing the water 
quality in Daoulas catchment, Justicou, Pen an Traon, and La 
Fresnaye, Britanny, France (Mauffret et al. 2012; Jardé et al. 
2018). Rum2Bac (with other markers) was used in a study 
conducted in South Fork Broad River, Georgia, USA, to show 
the relationship between MST markers and FIB. They could 
establish a positive correlation between Shiga-toxin, 
Campylobacter, and Rum2Bac MST marker (Bradshaw et al. 
2016). 
 
BacCan is the only known/developed Bacteroides-based MST 
marker for dogs. It is the MST marker used to determine the 
water quality and source track the waters of Ningi Creek, 
Queensland, Australia (Ahmed et al. 2008), coastal surface 
waters, central California, USA (Schriewer et al. 2010), different 
dog fountains and ponds across Calgary, Alberta, Canada 
(Tambalo et al. 2012); coast of Odisha, part of Bay of Bengal, 
India (Odagiri et al., 2015), and Gulf of Nicoya, Costa Rica 
(Symonds et al. 2017). In 2011, an MST marker for muskrat 
(Ondatra zibethicus) was developed to determine the presence 
and extent of the muskrat’s fecal pollution contributions to 
South Nations River, Canada. MuBa01, when tested, showed a 
sensitivity of 66% and specificity of 100% (Marti et al. 2011). 
Muskrats are wide-ranging semi-aquatic mammals common to 
North America and considered a normal and very common 
feature of the wetlands. They have very high fecundity, 
producing 2–3 offspring per year. Additionally, muskrats born 
in that year can also breed within that year due to their fast 
growth (Sadowski and Bowman 2021). 
 
AllBac is primarily a screening or preliminary MST marker to 
first check the presence (if any) of fecal contamination in a body 
of water. It is the initial test before performing or using more 
host-specific MST markers. Such as in the research by Stapleton 
et al. (2009), in which they used AllBac to first detect fecal 
contamination in the recreational bathing waters in the UK. A 
similar study was conducted in France, but other than bathing 
waters, it also included shellfish harvesting waters and the 
Daoulas catchment (Gourmelon et al. 2010; Mauffret et al. 
2012). The same was done in rural and urban watersheds in 
Canada by using AllBac to monitor fecal pollution (Ridley et al. 
2014; Stea et al. 2015), in the Danube River (Mayer et al. 2016; 
Kirschner et al. 2017), in the Sava River Basin, Central Europe 
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(Vrzel et al. 2016), and in the beach area of Duluth-Superior 
Harbor, Minnesota, USA (Zhang et al. 2016). In Bangladesh, 
AllBac was used to generalize that there are other sources of 
fecal contamination other than humans and cows in several pond 
waters used for hygiene purposes (Knappett et al. 2011). 
 
As can be seen, most of the markers are for mammalian fecal 
samples. However, Bacteroides has been identified in other 
warm-blooded and cold-blooded vertebrates such as ducks, 
geese, frogs, and toads. Unfortunately, for avian MST, only 
three MST markers have been developed. Many migratory 
waterfowls such as ducks and geese and non-migratory birds 
like chickens are also carriers of pathogens. Hence, the three 
avian-specific MST markers developed are insufficient in better 
monitoring and managing water pollution. After development, 
ChickenBac and DuckBac were immediately used to check the 
water quality by MST in Kamogamo River, Toyohira River, and 
Oono pond, Hokkaido, Japan, and showed an abundance of fecal 
contamination from ducks (Kobayashi et al. 2013). Alternatively, 
Canada’s geese population was estimated to be at 3 million and 
often occupy regions within urban settings. For that reason, the 
CGOF MST markers were developed to determine the extent of 
fecal pollution that Canadian geese may have contributed. True 
enough, using the developed CGOF markers, water samples 
from Wascana Lake detected high prevalence and abundance of 
Bacteroides markers (Fremaux et al. 2010). 
 
However, there have been reports of a cross-reaction of 
Bacteroides-based MST gene markers with other fecal samples. 
There are numerous cases where several MST markers supposed 
to be for a specific host would vary in their specificity. The two 
MST markers for pigs (Pig-1-Bac and Pig-2-Bac) would usually 
vary in their specificity depending on the geography (Mieszkin 
et al. 2009; Heaney et al. 2015). Another would be among the 
different human associated Bacteroides MST markers. Although 
HF183 is the most widely used, it is not always the best 
performing MST marker. HF183 was identified as a high-
performing marker in California, USA, and Australia. However, 
the MST marker BacHum was the better performing MST 
marker in Kenya and India. The 16S rRNA gene is a highly 
conserved region among bacteria. Thus, it is for this reason that 
cross-reactivity happens when this gene is amplified in MST. 
Therefore, it is important that marker sensitivity and specificity 
are established before performing actual MST research as they 
are the two major performance indicators of an MST marker and 
determine which MST marker to use (Ahmed et al. 2016). 
 
MST sensitivity is defined as the percentage of samples from a 
targeted host positive for the chosen market. Likewise, the 
greater the sensitivity of a marker, the closer it is to 100% host 
sensitivity. It is empirically measured by testing a collection of 
fecal samples from the target host, or it is simply expressed in 
Equation 1, mathematically (Nshimyimana et al. 2014). 
Currently, there is no consensus on the number of samples, type 
of sample, and sample volume needed to determine the 
sensitivity of a marker. Unfortunately, there is also no universal 
benchmark for sensitivity, but a value of > 80% is acceptable for 
MST use (Ahmed et al. 2016). Also, sensitivity varies due to 
geographical variations. This means that an MST marker with 
high sensitivity used in a given location does not necessarily 
mean that it will also have an increased sensitivity if used in a 
different location, because it has precedence from a previous site 
as being a highly sensitive marker. Thus, MST marker 
sensitivity should always be verified in every geographic region 
before performing a study (Harwood et al. 2014). 
 
 
 
 

 
Conversely, specificity is the number of non-target host samples 
that test negative for the assayed marker and mathematically 
shown in Equation 2 (Nshimyimana et al. 2014). Much research 
worldwide shows that most MST gene markers have variable 
specificity in different geographic areas. Studies have shown 
that an MST marker specific to a particular organism would 
cross-react to different organism/s. Unfortunately, like 
sensitivity, there is no recognized standard about the number of 
samples for specificity testing. However, statistically, analyzing 
as many non-target fecal samples as possible will increase 
confidence (Harwood et al. 2014). 
 

 
Ultimately, sensitivity and specificity vary with geographic area 
and time, highlighting the need for local validation. Therefore, 
before conducting any MST study, it is critical to first establish 
sensitivity and specificity, and validate MST marker accuracy 
using Equation 3 (Nshimyimana et al. 2014). Moreover, since 
the number of samples to reliably establish sensitivity and 
specificity is currently not yet standardized, some recent studies 
have reported that between 12–20 samples is acceptable 
(Reischer et al. 2006; Kildare et al. 2007; Haugland et al. 2010; 
Ebentier et al. 2013). 
 

 
Future research avenues 
Bacteroides, either as a “good” or “bad” bacterium, do not 
receive much attention as opposed to Lactobacillus and 
Bifidobacterium for being “good bacteria” and different fecal 
coliform bacteria as being “bad bacteria.” At times, they are 
described simply as gut microorganisms. In Europe, the 
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European-wide surveillance on antibiotic resistance of 
Bacteroides is conducted annually, to determine the current state 
of antimicrobial resistance (AMR) among the Bacteroides group 
(Kierzkowska et al. 2020; Sóki et al. 2020). Thus, more research 
on the AMR of Bacteroides must also be conducted in other 
countries in a similar way that other bacteria such as the AMR 
of E. coli, Staphylococcus, and Klebsiella are being extensively 
monitored. Another avenue for Bacteroides research is on 
Bacteroides from animals. Most of the research on Bacteroides 
is human-centered. However, more than half of the world’s 
antibiotic usage is for animal husbandry, but ironically, a meager 
10% of publications on antibiotic resistance are about animals, 
and the rest are on humans (He et al. 2020). 
 
There are many animals globally that contribute to fecal water 
pollution, and yet there are only a handful of MST markers 
developed. Understandably, the only MST markers made were 
for those that contribute large volumes of feces into the aquatic 
environment, such as humans and domesticated farmed animals. 
However, to create a long-term water conservation policy, more 
MST markers should be developed because other non-
domesticated animals are also carriers of virulent 
microorganisms. Also, even among the domesticated animals, 
there are still many of which are without a developed MST 
marker like goats, sheep, and poultry like turkey. 
 
Different kinds of migratory flying animals like pigeons, sea 
gulls, pelicans, herons, geese, swans, and bats have been 
associated as disease carriers of Borrelia (Lyme disease), West 
Nile virus (viral encephalitis), Mycobacterium avium/genevense 
(mycobacteriosis), influenza A virus (avian flu), Nipah virus, 
rabies virus, and SARS coronavirus. These migratory flying 
animals come by hundreds to thousands bringing with them 
pathogens. However, there are only two Bacteroides-based MST 
markers developed for migratory flying animals, which include 
for ducks (DuckBac) and for Canada geese (CGOF) (Reed et al. 
2003; Calisher et al. 2006). Therefore, more MST markers 
should be developed for migratory flying animals. 
 
Another aspect that can be enhanced is the accuracy of the MST 
markers developed. Note that diet serves as a strong 
evolutionary pressure on the gut microbiome. For example, 
DuckBac marker was developed using wild migratory ducks; 
hence, it may or may not be sensitive or specific enough if it is 
used for farmed ducks due to obvious differences in the diet of 
wild and farmed ducks. Thus, this also brings the issue of marker 
cross-reactivity. Therefore, it may be time to use a different 
approach in developing Bacteroides-based markers to increase 
specificity and sensitivity, like using other genes (housekeeping 
genes, virulence genes, antibiotic resistance genes). 
 
In conclusion, Bacteroides are an interesting group of bacteria 
found in the gut of many animals occupying an important 
ecological niche of the gut microbiome. Most of their 
attributions are on their role in the gut microbiome. However, 
their use on MST has now become a critical tool in helping to 
curb the problem of fecal water pollution. Lastly, it is noticeable 
that most of the countries that perform MST are highly 
developed countries like Canada, the USA, China, Japan, and 
France. After emphasizing the advantage of MST over the 
traditional FIBs, it is time for other countries, through their 
scientists, to explore the use of MST in monitoring water 
pollution. There is an imminent need for collaboration and cross-
disciplinary research between countries’ environmental 
managers, microbial ecologists, and government environmental 
policymakers to transfer and share the MST technology so that 
its use can be a norm. 
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